A vector exchange property of submodular systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Positivity Property of Ample Vector Bundles

Using Fujita-Griffiths method of computing metrics on Hodge bundles, we show that for every semi-ample vector bundle E on a compact complex manifold, and every positive integer k, the vector bundle SE ⊗ detE has a continuous metric with Griffiths semi-positive curvature. If E is ample, the metric can be made smooth and Griffiths positive.

متن کامل

Vector-Valued Property Elicitation

The elicitation of a statistic, or property of a distribution, is the task of devising proper scoring rules, equivalently proper losses, which incentivize an agent or algorithm to truthfully estimate the desired property of the underlying probability distribution or data set. Leveraging connections between elicitation and convex analysis, we address the vector-valued property case, which has re...

متن کامل

Property (T) for C*-dynamical systems

In this paper, we introduce a notion of property (T) for a C<span style="font-family: txsy; font-size: 7pt; color: #000000; font-style: norm...

متن کامل

A Multiple Exchange Property for Bases

Let X and Y be bases of a combinatorial geometry G, and let A be any subset of X. Then there exists a subset B of Y with the property that (X—A)kjB and (Y— B)\jA are both bases ofG.

متن کامل

A base exchange property for regular matroids

In this paper, we show that for any two bases B and B of a regular matroid, there is an element e ∈ B such that there is a unique element f ∈ B for which both (B\{e}) ∪ {f} and (B\{f}) ∪ {e} are bases of M. This solves a problem posed by White in 1980.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1984

ISSN: 0166-218X

DOI: 10.1016/0166-218x(84)90020-9